Abstract

Operator splitting schemes are a class of powerful algorithms that solve complicated monotone inclusion and convex optimization problems that are built from many simpler pieces. They give rise to algorithms in which all simple pieces of the decomposition are processed individually. This leads to easily implementable and highly parallelizable or distributed algorithms, which often obtain nearly state-of-the-art performance. In this paper, we analyze the convergence rate of the forward-Douglas--Rachford splitting (FDRS) algorithm, which is a generalization of the forward-backward splitting (FBS) and Douglas--Rachford splitting algorithms. Under general convexity assumptions, we derive the ergodic and nonergodic convergence rates of the FDRS algorithm, and show that these rates are the best possible. Under Lipschitz differentiability assumptions, we show that the best iterate of FDRS converges as quickly as the last iterate of the FBS algorithm. Under strong convexity assumptions, we derive convergence rates...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.