Abstract
The regularized Newton method (RNM) is one of the efficient solution methods for the unconstrained convex optimization. It is well-known that the RNM has good convergence properties as compared to the steepest descent method and the pure Newton’s method. For example, Li, Fukushima, Qi and Yamashita showed that the RNM has a quadratic rate of convergence under the local error bound condition. Recently, Polyak showed that the global complexity bound of the RNM, which is the first iteration k such that ‖∇f(xk)‖≤e, is O(e−4), where f is the objective function and e is a given positive constant. In this paper, we consider a RNM extended to the unconstrained “nonconvex” optimization. We show that the extended RNM (E-RNM) has the following properties. (a) The E-RNM has a global convergence property under appropriate conditions. (b) The global complexity bound of the E-RNM is O(e−2) if ∇2f is Lipschitz continuous on a certain compact set. (c) The E-RNM has a superlinear rate of convergence under the local error bound condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.