Abstract

We study convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms (Andrieu and Roberts [Ann. Statist. 37 (2009) 697-725]). We find that the asymptotic variance of the pseudo-marginal algorithm is always at least as large as that of the marginal algorithm. We show that if the marginal chain admits a (right) spectral gap and the weights (normalised estimates of the target density) are uniformly bounded, then the pseudo-marginal chain has a spectral gap. In many cases, a similar result holds for the absolute spectral gap, which is equivalent to geometric ergodicity. We consider also unbounded weight distributions and recover polynomial convergence rates in more specific cases, when the marginal algorithm is uniformly ergodic or an independent Metropolis-Hastings or a random-walk Metropolis targeting a super-exponential density with regular contours. Our results on geometric and polynomial convergence rates imply central limit theorems. We also prove that under general conditions, the asymptotic variance of the pseudo-marginal algorithm converges to the asymptotic variance of the marginal algorithm if the accuracy of the estimators is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.