Abstract

The propagation of electrical activity in the human heart can be modelled mathematically by the bidomain equations. The bidomain equations represent a multi-scale reaction-diffusion model that consists of a set of ordinary differential equations governing the dynamics at the cellular level coupled with a set of partial differential equations governing the dynamics at the tissue level. Significant computation is generally required to generate clinically useful data from the bidomain equations. Contemporary developments in computer architecture, in particular multi- and many-core computers and graphics processing units, have made such computations feasible. However, the zeal to take advantage to parallel architectures has typically caused another important aspect of numerical methods for the solution of differential equations to be overlooked, namely the convergence order. It is well known that higher-order methods are generally more efficient than lower-order ones when solutions are smooth and relatively high accuracy is desired. In these situations, serial implementations of high-order methods may remain surprisingly competitive with parallel implementations of low-order methods. In this paper, we examine the effect of order on the numerical solution of the bidomain equations in parallel. We find that high-order methods, in particular high-order time-integration methods with relatively better stability properties, tend to outperform their low-order counterparts, even when the latter are run in parallel. In other words, increasing integration order often trumps increasing available computational resources, especially when relatively high accuracy is desired.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.