Abstract

We study the convergence of the spectral Galerkin method in solving the stochastic reaction–diffusion–advection equation under different Lipschitz conditions of the reaction function f. When f is globally (locally) Lipschitz continuous, we prove that the spectral Galerkin approximation strongly (weakly) converges to the mild solution of the stochastic reaction–diffusion–advection equation, and the rate of convergence in Hr-norm is (12−r)−, for any r∈[0,12) (r∈(12−12d,12)). The convergence analysis in the local Lipschitz case is challenging, especially in the presence of an advection term. We propose a new approach based on the truncation techniques, which can be easily applied to study other stochastic partial differential equations. Numerical simulations are also provided to study the convergence of Galerkin approximations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.