Abstract
The estimates of the radii of convergence balls of the Newton method and uniqueness balls of zeroes of vector fields on the Riemannian manifolds are given under the assumption that the covariant derivatives of the vector fields satisfy some kind of general Lipschitz conditions. Some classical results such as the Kantorovich's type theorem and the Smale's γ -theory are extended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.