Abstract

We prove in this paper the convergence of the Marker and cell (MAC) scheme for the discretization of the steady-state incompressible Navier-Stokes equations in primitive variables on non-uniform Cartesian grids, without any regularity assumption on the solution. A priori estimates on solutions to the scheme are proven; they yield the existence of discrete solutions and the compactness of sequences of solutions obtained with family of meshes the space step of which tends to zero. We then establish that the limit is a weak solution to the continuous problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.