Abstract

We provide a comprehensive study of the convergence of the forward-backward algorithm under suitable geometric conditions, such as conditioning or Łojasiewicz properties. These geometrical notions are usually local by nature, and may fail to describe the fine geometry of objective functions relevant in inverse problems and signal processing, that have a nice behaviour on manifolds, or sets open with respect to a weak topology. Motivated by this observation, we revisit those geometric notions over arbitrary sets. In turn, this allows us to present several new results as well as collect in a unified view a variety of results scattered in the literature. Our contributions include the analysis of infinite dimensional convex minimization problems, showing the first Łojasiewicz inequality for a quadratic function associated to a compact operator, and the derivation of new linear rates for problems arising from inverse problems with low-complexity priors. Our approach allows to establish unexpected connections between geometry and a priori conditions in inverse problems, such as source conditions, or restricted isometry properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.