Abstract

We establish the convergence of the finite volume method applied to multidimensional hyperbolic conservation laws and based on monotone numerical flux-functions. Our technique applies with a fairly unrestrictive assumption on the triangulations (“flat elements” are allowed) and to Lipschitz continuous flux-functions. We treat the initial and boundary value problem and obtain the strong convergence of the scheme to the unique entropy discontinuous solution in the sense of Kruzkov. The proof of convergence is based on a convergence framework [Coquel and LeFloch, Math. Comp., 57 (1991), pp. 169–210 and J. Numer. Anal., 30 (1993), pp. 675–700]. From a convex decomposition of the scheme, we derive a new estimate for the rate of entropy dissipation and a new formulation of the discrete entropy inequalities. These estimates are shown to be sufficient for the passage to the limit in the discrete equation. Convergence follows from DiPerna’s uniqueness result in the class of entropy measure-valued solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.