Abstract

Much discussion in relativistic atomic physics and quantum optics has related to the interaction of gauge and perturbation of the Hamiltonian or Dirac operator. It has been commented that Lorentz and gauge independence requires different forms of the perturbation operator in shifting from one gauge to another. Equally, it has been commented that gauge convergence is not possible without different operator forms in different bases and without the operator being embedded within the self-consistent kernel. We explore the logic and self-consistency of these arguments, applied to the well-known Breit operator in an area of continuing discussion. We find that convergence is now possible to a remarkable degree including a Breit interaction operator in a form consistent with the gauge for length and velocity relativistic forms of the multipole operator, implemented at the configuration-interaction level. Excellent convergence is obtained for Breit interaction energies, interaction mixing coefficients, interaction transition probabilities and eigenenergies and transition probabilities in complex open shells (transition metal K $\ensuremath{\alpha}$ transitions and shake satellites), and forbidden transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.