Abstract

The objective was to identify the correspondence between the anterior terminations of the arcuate fasciculus (AF) and third branch of the superior longitudinal fasciculus (SLF-III) and the intraoperative direct cortical electrical stimulation (DCS)-induced speech arrest area. The authors retrospectively screened 75 glioma patients (group 1) who received intraoperative DCS mapping in the left dominant frontal cortex. To minimize the influence of tumors or edema, we subsequently selected 26 patients (group 2) with glioma or edema not affecting Broca's area, the ventral precentral gyrus (vPCG), and the subcortical pathways to generate DCS functional maps and to construct the anterior terminations of AF and SLF-III with tractography. Next, a grid-by-grid pairwise comparison was performed between the fiber terminations and the DCS-induced speech arrest sites to calculate Cohen's kappa coefficient (κ) in both groups 1 and 2. Finally, the authors also demonstrated the distribution of the AF/SLF-III anterior projection maps obtained in 192 healthy participants (group 3) and subsequently correlated these with the speech arrest sites in group 2 to examine their validity in predicting speech output area. The authors found that speech arrest sites were substantially consistent with SLF-III anterior terminations (group 1, κ = 0.64 ± 0.03; group 2, κ = 0.73 ± 0.05) and moderately consistent with AF (group 1, κ = 0.51 ± 0.03; group 2, κ = 0.49 ± 0.05) and AF/SLF-III complex (group 1, κ = 0.54 ± 0.03; group 2, κ = 0.56 ± 0.05) terminations (all p < 0.0001). The DCS speech arrest sites of the group 2 patients mainly (85.1%) emerged at the anterior bank of the vPCG (vPCGa). In group 3, both terminations of AF and SLF-III converged onto the vPCGa, and their terminations well predicted the DCS speech output area of group 2 (AF, area under the curve [AUC] 86.5%; SLF-III, AUC 79.0%; AF/SLF-III complex, AUC 86.7%). This study supports the key role of the left vPCGa as the speech output node by showing convergence between speech output mapping and anterior AF/SLF-III connectivity in the vPCGa. These findings may contribute to the understanding of speech networks and could have clinical implications in preoperative surgical planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.