Abstract
We prove stability and convergence of a full discretization for a class of stochastic evolution equations with super-linearly growing operators appearing in the drift term. This is done by using the recently developed tamed Euler method, which employs a fully explicit time stepping, coupled with a Galerkin scheme for the spatial discretization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastics and Partial Differential Equations: Analysis and Computations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.