Abstract

In this paper, we study the almost sure boundedness and the convergence of the stochastic approximation (SA) algorithm. At present, most available convergence proofs are based on the ODE method, and the almost sure boundedness of the iterations is an assumption and not a conclusion. In Borkar and Meyn (SIAM J Control Optim 38:447–469, 2000), it is shown that if the ODE has only one globally attractive equilibrium, then under additional assumptions, the iterations are bounded almost surely, and the SA algorithm converges to the desired solution. Our objective in the present paper is to provide an alternate proof of the above, based on martingale methods, which are simpler and less technical than those based on the ODE method. As a prelude, we prove a new sufficient condition for the global asymptotic stability of an ODE. Next we prove a “converse” Lyapunov theorem on the existence of a suitable Lyapunov function with a globally bounded Hessian, for a globally exponentially stable system. Both theorems are of independent interest to researchers in stability theory. Then, using these results, we provide sufficient conditions for the almost sure boundedness and the convergence of the SA algorithm. We show through examples that our theory covers some situations that are not covered by currently known results, specifically Borkar and Meyn (2000).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call