Abstract
For solving Burgers' equation with periodic boundary conditions, this paper presents a fully spectral discretization method: Fourier Galerkin approximation in the spatial direction and Chebyshev pseudospectral approximation in the time direction. The expansion coefficients are determined by means of minimizing an object functional, and rapid convergence of the method is proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.