Abstract

Abstract In this work we prove convergence results of sequences of Riemannian 4-manifolds with almost vanishing L 2 {L^{2}} -norm of a curvature tensor and a non-collapsing bound on the volume of small balls. In Theorem 1.1 we consider a sequence of closed Riemannian 4-manifolds, whose L 2 {L^{2}} -norm of the Riemannian curvature tensor tends to zero. Under the assumption of a uniform non-collapsing bound and a uniform diameter bound, we prove that there exists a subsequence that converges with respect to the Gromov–Hausdorff topology to a flat manifold. In Theorem 1.2 we consider a sequence of closed Riemannian 4-manifolds, whose L 2 {L^{2}} -norm of the Riemannian curvature tensor is uniformly bounded from above, and whose L 2 {L^{2}} -norm of the traceless Ricci-tensor tends to zero. Here, under the assumption of a uniform non-collapsing bound, which is very close to the Euclidean situation, and a uniform diameter bound, we show that there exists a subsequence which converges in the Gromov–Hausdorff sense to an Einstein manifold. In order to prove Theorem 1.1 and Theorem 1.2, we use a smoothing technique, which is called L 2 {L^{2}} -curvature flow. This method was introduced by Jeffrey Streets. In particular, we use his “tubular averaging technique” in order to prove distance estimates of the L 2 {L^{2}} -curvature flow, which only depend on significant geometric bounds. This is the content of Theorem 1.3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.