Abstract

The performance of Krylov eigenvalue algorithms for large matrices can be measured by the angle between a desired invariant and the Krylov subspace. We develop general bounds for this convergence that include the effects of polynomial restarting and impose no restrictions concerning the diagonalizability of the matrix or its degree of nonnormality. Associated with a desired set of eigenvalues is a maximum reachable invariant subspace that can be developed from the given starting vector. Convergence for this distinguished is bounded in terms involving a polynomial approximation problem. Elementary results from potential theory lead to convergence rate estimates and suggest restarting strategies based on optimal approximation points (e.g., Leja or Chebyshev points); exact shifts are evaluated within this framework. Computational examples illustrate the utility of these results. Origins of superlinear effects are also described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.