Abstract
Convergence results are presented for rank-type difference equations, whose evolution rule is defined at each step as the kth largest of p univariate difference equations. If the univariate equations are individually contractive, then the equation converges to a fixed point equal to the kth largest of the individual fixed points of the univariate equations. Examples are max-type equations for k = 1, and the median of an odd number p of equations, for k = ( p + 1)/2. In the non-hyperbolic case, conjectures are stated about the eventual periodicity of the equations, generalizing long-standing conjectures of G. Ladas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.