Abstract
The present paper is concerned with the convergence problems of Newton’s method and the uniqueness problems of singular points for sections on Riemannian manifolds. Suppose that the covariant derivative of the sections satisfies the generalized Lipschitz condition. The convergence balls of Newton’s method and the uniqueness balls of singular points are estimated. Some applications to special cases, which include the Kantorovich’s condition and the γ-condition, as well as the Smale’s γ-theory for sections on Riemannian manifolds, are given. In particular, the estimates here are completely independent of the sectional curvature of the underlying Riemannian manifold and improve significantly the corresponding ones due to Dedieu, Priouret and Malajovich (IMA J. Numer. Anal. 23:395–419, 2003), as well as the ones in Li and Wang (Sci. China Ser. A. 48(11):1465–1478, 2005).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.