Abstract

Numerical methods for linear kinetic equations based on moment expansions for a discretization in the velocity direction are examined. The moment equations are hyperbolic systems which can be shown to converge to the kinetic equation as the order of the expansion tends to infinity and to a drift-diffusion model as the Knudsen number tends to zero. A discretization of the moment equations with respect to time and space is presented, a stability result is proven, and some aspects of an implementation are discussed. In particular, an adaptive procedure is described where the order of the expansion is determined locally. Results of numerical experiments are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.