Abstract

The interaction of two feedback loops was investigated: one regulating cuticular stress in the stick insect's leg and the other controlling leg posture. Exclusive stimulation of either of the two relevant sense organs, the load-sensitive trochantero-femoral campaniform sensilla (CS) or the position-/movement-sensitive ventral coxal hairplate (cxHPv), elicits resistance reflex responses in the retractor and the protractor coxae motoneuron pools. Concurrent application of both stimulus modalities reveals that the strength of the postural feedback response is dependent on sign and amplitude of the load feedback response and vice versa. This superposition of the two reflex responses appears to be non-linear. The results indicate that the CS information is underlying a force control function in this six-legged animal. It is hypothesized that the force control of each single leg could help to optimize the force distribution of the six-legged system, even - due to the mechanical coupling - without explicit neuronal pathways. On the level of the single leg control it was studied whether the different information provided by the two feedback transducers converge on the level of retractor coxae motoneurons or whether this information is fully preprocessed at the level of premotor interneurons. It is shown here that the hairplate afferents make direct, excitatory connections with the retractor motoneurons. Studies of the motoneurons' membrane conductances during exclusive CS stimulation reveal that both, excitatory as well as inhibitory synaptic drive is delivered onto the retractor motoneurons. Thus, the motoneuronal membrane is shown to be an important stage for the sensor fusion of the two modalities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call