Abstract
Abstract We show that the abscissa of convergence of the Laplace transform of an exponentially bounded function does not exceed its abscissa of boundedness. For C0-semigroups of operators, this result was first proved by L. Weis and V. Wrobel. Our proof for functions follows a method used by J. van Neerven in the semigroup case. P.H. Bloch gave an example of an integrable function for which the result does not hold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Comptes Rendus de l'Académie des Sciences - Series I - Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.