Abstract

SummaryIterative fast Fourier transform methods are useful for calculating the fields in composite materials and their macroscopic response. By iterating back and forth until convergence, the differential constraints are satisfied in Fourier space and the constitutive law in real space. The methods correspond to series expansions of appropriate operators and to series expansions for the effective tensor as a function of the component moduli. It is shown that the singularity structure of this function can shed much light on the convergence properties of the iterative fast Fourier transform methods. We look at a model example of a square array of conducting square inclusions for which there is an exact formula for the effective conductivity (Obnosov). Theoretically, some of the methods converge when the inclusions have zero or even negative conductivity. However, the numerics do not always confirm this extended range of convergence and show that accuracy is lost after relatively few iterations. There is little point in iterating beyond this. Accuracy improves when the grid size is reduced, showing that the discrepancy is linked to the discretization. Finally, it is shown that none of the 3 iterative schemes investigated overperforms the others for all possible microstructures and all contrasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.