Abstract

In this article, we first introduce an iterative method based on the hybrid viscosity approximation method and the hybrid steepest-descent method for finding a fixed point of a Lipschitz pseudocontractive mapping (assuming existence) and prove that our proposed scheme has strong convergence under some mild conditions imposed on algorithm parameters in real Hilbert spaces. Next, we introduce a new iterative method for a solution of a nonlinear integral equation of Hammerstein type and obtain strong convergence in real Hilbert spaces. Our results presented in this article generalize and extend the corresponding results on Lipschitz pseudocontractive mapping and nonlinear integral equation of Hammerstein type reported by some authors recently. We compare our iterative scheme numerically with other iterative scheme for solving non-linear integral equation of Hammerstein type to verify the efficiency and implementation of our new method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.