Abstract
We deal with single conservation laws with a spatially varying and possibly discontinuous coefficient. This equation includes as a special case single conservation laws with conservative and possibly singular source terms. We extend the framework of optimal entropy solutions for these classes of equations based on a two-step approach. In the first step, an interface connection vector is used to define infinite classes of entropy solutions. We show that each of these classes of solutions is stable in L1. This allows for the possibility of choosing one of these classes of solutions based on the physics of the problem. In the second step, we define optimal entropy solutions based on the solution of a certain optimization problem at the discontinuities of the coefficient. This method leads to optimal entropy solutions that are consistent with physically observed solutions in two-phase flows in heterogeneous porous media. Another central aim of this paper is to develop suitable numerical schemes for these equations. We develop and analyze a set of Godunov type finite volume methods that are based on exact solutions of the corresponding Riemann problem. Numerical experiments are shown comparing the performance of these schemes on a set of test problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.