Abstract
A new formulation, a gauge formulation of the incompressible Navier-Stokes equations in terms of an auxiliary field a and a gauge variable Φ, u = a + ⊇Φ, was proposed recently by E and Liu. This paper provides a theoretical analysis of their formulation and verifies the computational advantages. We discuss the implicit gauge method, which uses backward Euler or Crank-Nicolson in time discretization. However, the boundary conditions for the auxiliary field a are implemented explicitly (vertical extrapolation). The resulting momentum equation is decoupled from the kinematic equation, and the computational cost is reduced to solving a standard heat and Poisson equation. Moreover, such explicit boundary conditions for the auxiliary field a will be shown to be unconditionally stable for Stokes equations. For the full nonlinear Navier-Stokes equations the time stepping constraint is reduced to the standard CFL constraint Δt/Δx < C. We also prove first order convergence of the gauge method when we use MAC grids as our spatial discretization. The optimal error estimate for the velocity field is also obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.