Abstract
We have implemented the serial replica exchange method (SREM) and simulated tempering (ST) enhanced sampling algorithms in a global distributed computing environment. Here we examine the helix-coil transition of a 21 residue alpha-helical peptide in explicit solvent. For ST, we demonstrate the efficacy of a new method for determining initial weights allowing the system to perform a random walk in temperature space based on short trial simulations. These weights are updated throughout the production simulation by an adaptive weighting method. We give a detailed comparison of SREM, ST, as well as standard MD and find that SREM and ST give equivalent results in reasonable agreement with experimental data. In addition, we find that both enhanced sampling methods are much more efficient than standard MD simulations. The melting temperature of the Fs peptide with the AMBER99phi potential was calculated to be about 310 K, which is in reasonable agreement with the experimental value of 334 K. We also discuss other temperature dependent properties of the helix-coil transition. Although ST has certain advantages over SREM, both SREM and ST are shown to be powerful methods via distributed computing and will be applied extensively in future studies of complex bimolecular systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.