Abstract
The Cauchy problem for the complete Euler system is in general ill-posed in the class of admissible (entropy producing) weak solutions. This suggests that there might be sequences of approximate solutions that develop fine-scale oscillations. Accordingly, the concept of measure-valued solution that captures possible oscillations is more suitable for analysis. We study the convergence of a class of entropy stable finite volume schemes for the barotropic and complete compressible Euler equations in the multidimensional case. We establish suitable stability and consistency estimates and show that the Young measure generated by numerical solutions represents a dissipative measure-valued solution of the Euler system. Here dissipative means that a suitable form of the second law of thermodynamics is incorporated in the definition of the measure-valued solutions. In particular, using the recently established weak-strong uniqueness principle, we show that the numerical solutions converge pointwise to the regular solution of the limit systems at least on the lifespan of the latter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.