Abstract

We study semi-Lagrangian discontinuous Galerkin (SLDG) and Runge-Kutta discontinuous Galerkin (RKDG) schemes for some front propagation problems in the presence of an obstacle term, modeled by a nonlinear Hamilton-Jacobi equation of the form $\min(u_t + c u_x, u - g(x))=0$, in one space dimension. New convergence results and error bounds are obtained for Lipschitz regular data. These "low regularity" assumptions are the natural ones for the solutions of the studied equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.