Abstract

A nonlinear degenerate Fokker-Planck equation in the whole space is analyzed. The existence of solutions to the corresponding implicit Euler scheme is proved, and it is shown that the semi-discrete solution converges to a solution of the continuous problem. Furthermore, the discrete entropy decays monotonically in time and the solution to the continuous problem is unique. The nonlinearity is assumed to be of porous-medium type. For the (given) potential, either a less than quadratic growth condition at infinity is supposed or the initial datum is assumed to be compactly supported. The existence proof is based on regularization and maximum principle arguments. Upper bounds for the tail behavior in space at infinity are also derived in the at-most-quadratic growth case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.