Abstract

The convergence properties of the new regularized Euclidean residual method for solving general nonlinear least-squares and nonlinear equation problems are investigated. This method, derived from a proposal by Nesterov [Optim. Methods Softw., 22 (2007), pp. 469-483], uses a model of the objective function consisting of the unsquared Euclidean linearized residual regularized by a quadratic term. At variance with previous analysis, its convergence properties are here considered without assuming uniformly nonsingular globally Lipschitz continuous Jacobians nor an exact subproblem solution. It is proved that the method is globally convergent to first-order critical points and, under stronger assumptions, to roots of the underlying system of nonlinear equations. The rate of convergence is also shown to be quadratic under stronger assumptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.