Abstract

We propose to use the proximal point algorithm to regularize a “dual” problem of generalized fractional programs (GFP). The proposed technique leads to a new dual algorithm that generates a sequence which converges from below to the minimal value of the considered problem. At each step, the proposed algorithm solves approximately an auxiliary problem with a unique dual solution whose every cluster point gives a solution to the dual problem. In the exact minimization case, the sequence of dual solutions converges to an optimal dual solution. For a class of functions, including the linear case, the convergence of the dual values is at least linear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.