Abstract

AbstractWe analyze the convergence of the Longstaff–Schwartz algorithm relying on only a single set of independent Monte Carlo sample paths that is repeatedly reused for all exercise time‐steps. We prove new estimates on the stochastic component of the error of this algorithm whenever the approximation architecture is any uniformly bounded set of L2 functions of finite Vapnik–Chervonenkis dimension (VC‐dimension), but in particular need not necessarily be either convex or closed. We also establish new overall error estimates, incorporating bounds on the approximation error as well, for certain nonlinear, nonconvex sets of neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.