Abstract

The problem of convergence of a special form of the generalized pulse-spectrum technique (GPST) for solving inverse problems of one-dimensional diffusion equations in space-time domain is considered. Under the assumptions that a Tikhonov regularized solution exists and the derivative operator of the regularized forward problem at the regularized solution is invertible, the iterative solutions of this special GPST converge to the Tikhonov regularized solution in C norm if the initial guess is close enough to the Tikhonov regularized solution and the rate of convergence is at least linear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.