Abstract
In this work, we introduce a generalization of the preconditioned modified Hermitian and skew-Hermitian splitting (PMHSS) iteration method, named as generalized PMHSS (GPMHSS) iteration method, to solve a class of singular block two-by-two system of linear equations. Theoretical analyses show that the GPMHSS iteration method converges unconditionally to the minimum norm least squares solution for any initial guess no matter the system is consistent or inconsistent. Besides, with the preconditioner derived from the GPMHSS iteration method, the preconditioned generalized minimal residual (GMRES) method also determines the minimum norm least squares solution of the consistent singular block two-by-two linear systems at breakdown. Numerical experiments are presented to show the effectiveness and the robustness of the GPMHSS iteration method and the corresponding preconditioner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.