Abstract
The aim the paper is to study a large class of variational-hemivariational inequalities involving constraints in a Banach space. First, we establish a general existence theorem for this class. Second, we introduce a sequence of penalized problems without constraints. Under the suitable assumptions, we prove that the Kuratowski upper limit with respect to the weak topology of the sets of solutions to penalized problems, w--lim supn→∞Sn, is nonempty and is contained in the set of solutions to original inequality problem. Also, we prove the identity, w--lim supn→∞Sn=s--lim supn→∞Sn, when operator A satisfies (S)+-property. Finally, we illustrate the applicability of the theoretical results and we explore two complicated partial differential systems of elliptic type, which are an elliptic mixed boundary value problem involving a nonlinear nonhomogeneous differential operator with an obstacle effect, and a nonlinear elastic contact problem in mechanics with unilateral constraints, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.