Abstract
In this paper, we put emphasis on discussing a full discrete finite element scheme for the Korteweg–de Vries equation, where nonlinear term is dealt with a semi-implicit scheme and temporal term is discreted by the Euler scheme. Theoretical analysis is based on error splitting technique, i.e., error function is split as temporal error function plus spatial error function, and then unconditionally optimal error estimates of the considered full discrete scheme are obtained. Numerical results are provided to confirm our theoretical analysis, which show that no time-step condition is needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.