Abstract
A unified convergence theory is derived for a class of stationary iterative methods for solving linear equality constrained quadratic programs or saddle point problems. This class is constructed from essentially all possible splittings of the submatrix residing in the (1,1)-block of the augmented saddle point matrix that would produce non-expansive iterations. The classic augmented Lagrangian method and alternating direction method of multipliers are two special members of this class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Operations Research Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.