Abstract
A class of binary decision-making tasks called the two-alternative forced-choice task has been used extensively in psychology and behavioral economics experiments to investigate human decision making. The human subject makes a choice between two options at regular time intervals and receives a reward after each choice; for a variety of reward structures, these experiments show convergence of the aggregate behavior to rewards that are often suboptimal. In this paper we present two models of human decision making: one is the Win-Stay, Lose-Switch (WSLS) model and the other is a deterministic limit of the popular Drift Diffusion (DD) model. With these models we prove the convergence of human behavior to the observed aggregate decision making for reward structures with matching points. The analysis is motivated by human-in-the-loop systems, where humans are often required to make repeated choices among finite alternatives in response to evolving system performance measures. We discuss application of the convergence result to the design of human-in-the-loop systems using a map from the human subject to a human supervisor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.