Abstract
The main object of this article is to consider a family of approximation operators of exponential type, which has presumably not been studied earlier due mainly to their seemingly complicated behavior. We estimate and establish a quantitative asymptotic formula in terms of the modulus of continuity with exponential growth, a Korovkin-type result for exponential functions and also a Voronovskaja-type asymptotic formula in the simultaneous approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.