Abstract

The behaviour of tunnels reinforced with radially disposed fully grouted bolts is investigated in this paper. Perfect bonding and ideal diffusion of bolt tension are assumed, so that the bolt tension can be assimilated to an equivalent uniaxial stress tensor. An analytical model of the convergence–confinement type is proposed that accounts for the delayed action of bolts due to ground decompression prior to bolt installation. This factor leads to nonsimultaneous yielding, and more generally, a different stress history for each constituent, requiring special treatments in the incremental elastoplasticity calculations. Nonetheless, the resulting model remains sufficiently simple, and an analytical solution is still accessible. Charts are provided to allow for parametric studies and quick preliminary designs. Comparisons with 3D numerical calculations show that the model gives precise results if the correct convergence at the moment of bolt installation is used as an "external" input parameter, validating the homogenization approach. An approximate methodology based on previous works is proposed to determine this parameter to render the proposed model "self-sufficient." Its predictions are again compared to 3D numerical computations, and the results are found to be sufficiently accurate for practical applications.Key words: reinforcement, anisotropy, analytical, lining, yield, elastoplasticity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.