Abstract
A new quadratic Hermite-type triangular finite element is conceived to solve a class of two-dimensional second-order elliptic boundary value problems. Its error estimates on anisotropic meshes are developed. Furthermore, we verify that some conditions set to the meshes contribute to the proof of its superconvergence properties, which can improve the approximation results. Numerical examples are given to confirm our theoretical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.