Abstract

Delay-differential-algebraic equations have been widely used to model some important phenomena in science and engineering. Since, in general, such equations do not admit a closed-form solution, it is necessary to solve them numerically by introducing suitable integrators. The present paper extends the class of block boundary value methods (BBVMs) to approximate the solutions of nonlinear delay-differential equations with algebraic constraint and piecewise continuous arguments. Under the classical Lipschitz conditions, convergence and stability criteria of the extended BBVMs are derived. Moreover, a couple of numerical examples are provided to illustrate computational effectiveness and accuracy of the methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call