Abstract
It is often the case in numerical relativity that schemes that are known to be convergent for well posed systems are used in evolutions of weakly hyperbolic (WH) formulations of Einstein's equations. Here we explicitly show that with several of the discretizations that have been used through out the years, this procedure leads to non-convergent schemes. That is, arbitrarily small initial errors are amplified without bound when resolution is increased, independently of the amount of numerical dissipation introduced. The lack of convergence introduced by this instability can be particularly subtle, in the sense that it can be missed by several convergence tests, especially in 3+1 dimensional codes. We propose tests and methods to analyze convergence that may help detect these situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.