Abstract
We consider collections of Lagrangian submanifolds of a given symplectic manifold which respect uniform bounds of curvature type coming from an auxiliary Riemannian metric. We prove that, for a large class of metrics on these collections, convergence to an embedded Lagrangian submanifold implies convergence to it in the Hausdorff metric. This class of metrics includes well-known metrics such as the Lagrangian Hofer metric, the spectral metric and the shadow metrics introduced by Biran et al. [Lagrangian shadows and triangulated categories, Astérisque 426 (2021) 1–128]. The proof relies on a version of the monotonicity lemma, applied on a carefully-chosen metric ball.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.