Abstract
We study the convergence and decay rate to equilibrium of bounded solutions of the quasilinear parabolic equation u t − div a ( x , ∇ u ) + f ( x , u ) = 0 on a bounded domain, subject to Dirichlet boundary and to initial conditions. The data are supposed to satisfy suitable regularity and growth conditions. Our approach to the convergence result and decay estimate is based on the Łojasiewicz–Simon gradient inequality which in the case of the semilinear heat equation is known to give optimal decay estimates. The abstract results and their applications are discussed also in the framework of Orlicz–Sobolev spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.