Abstract

This paper can be regarded as the continuation of the work contained in papers Milošević (2011, 2013). At the same time, it represents the extension of the paper Wu et al. (2010). In this paper, the one-sided Lipschitz condition is employed in the context of the backward Euler method, for a class of neutral stochastic differential equations with constant delay. Sufficient conditions for this method to be well defined are revealed. Under certain nonlinear growth conditions, the convergence in probability is established for the continuous forward–backward Euler method, as well as for the discrete backward Euler method. Additionally, it is proved that the discrete backward Euler equilibrium solution is globally a.s. asymptotically exponentially stable, without requiring for the drift coefficient to satisfy the linear growth condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.