Abstract
In this work the quasi-static model of the three-dimensional geometrical non-conjugate contact problem for two [Formula: see text] surfaces is studied. The set of contact equations is formulated by using a new parameterisation that enables to reduce the conventional system of five nonlinear equations with five unknown position and contact parameters to just two nonlinear equations with two changeable parameters. The novel model is computationally efficient and demonstrates increased accuracy and stability of the numerical solution, compared to the conventional model described by Litvin, which suffers from convergence problems and requires a high computational effort. The new model is implemented to spur gear with crowned tooth surfaces to parametrically estimate the susceptibility to diverse misalignments of the contact pressure, transmission error and path of contact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.