Abstract

Three different displacement based finite element formulations over arbitrary polygons are studied in this paper. The formulations considered are the conventional polygonal finite element method (FEM) with Laplace interpolants, the cell-based smoothed polygonal FEM with simple averaging technique and the scaled boundary polygon formulation. For the purpose of numerical integration, we employ the sub-triangulation for polygonal FEM and classical Gaussian quadrature for the smoothed FEM and the scaled boundary polygon formulation. The accuracy and the convergence properties of these formulations are studied with a few benchmark problems in the context of linear elasticity and the linear elastic fracture mechanics. The extension of scaled boundary polygon to higher order polygons is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call