Abstract

The thermal discrete dipole approximation (T-DDA) is a numerical approach for modeling near-field radiative heat transfer in complex three-dimensional geometries. In this work, the convergence of the T-DDA is investigated by comparison against the exact results for two spheres separated by a vacuum gap. The error associated with the T-DDA is reported for various sphere sizes, refractive indices, and vacuum gap thicknesses. The results reveal that for a fixed number of subvolumes, the accuracy of the T-DDA degrades as the refractive index and the sphere diameter to gap ratio increase. A converging trend is observed as the number of subvolumes increases. The large computational requirements associated with increasing the number of subvolumes, and the shape error induced by large sphere diameter to gap ratios, are mitigated by using a nonuniform discretization scheme. Nonuniform discretization is shown to significantly accelerate the convergence of the T-DDA, and is thus recommended for near-field thermal radiation simulations. Errors less than 5% are obtained in 74% of the cases studied by using up to 82,712 subvolumes. Additionally, the convergence analysis demonstrates that the T-DDA is very accurate when dealing with surface polariton resonant modes dominating radiative heat transfer in the near field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.