Abstract
We propose and analyze the convergence of a novel stochastic algorithm for solving monotone inclusions that are the sum of a maximal monotone operator and a monotone, Lipschitzian operator. The propose algorithm requires only unbiased estimations of the Lipschitzian operator. We obtain the rate $${\mathcal {O}}(log(n)/n)$$ in expectation for the strongly monotone case, as well as almost sure convergence for the general case. Furthermore, in the context of application to convex–concave saddle point problems, we derive the rate of the primal–dual gap. In particular, we also obtain $${\mathcal {O}}(1/n)$$ rate convergence of the primal–dual gap in the deterministic setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.